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Abstract— Dynamic Vision Sensor (DVS)-based solutions
have recently garnered significant interest across various com-
puter vision tasks, offering notable benefits in terms of dynamic
range, temporal resolution, and inference speed. However, as a
relatively nascent vision sensor compared to Active Pixel Sensor
(APS) devices such as RGB cameras, DVS suffers from a dearth
of ample labeled datasets. Prior efforts to convert APS data into
events often grapple with issues such as a considerable domain
shift from real events, the absence of quantified validation, and
layering problems within the time axis. In this paper, we present
a novel method for video-to-events stream conversion from
multiple perspectives, considering the specific characteristics
of DVS. A series of carefully designed losses helps enhance
the quality of generated event voxels significantly. We also
propose a novel local dynamic-aware timestamp inference
strategy to accurately recover event timestamps from event
voxels in a continuous fashion and eliminate the temporal
layering problem. Results from rigorous validation through
quantified metrics at all stages of the pipeline establish our
method unquestionably as the current state-of-the-art (SOTA).

I. INTRODUCTION

Neuromorphic cameras, also referred to as Dynamic Vi-
sion Sensors (DVS) or event cameras, have recently emerged
as a significant area of interest in the field of robotics [1],
[2], [3] and computer vision [4], [5], [6]. The exceptionally
high optical event capture rate, high dynamic range, low yet
adaptive power consumption, sparse output, and a dynamic
vision scheme akin to mammalian perception contribute to
their success in various computer vision applications [7],
[8], [9]. These include feature tracking [10], [11], optical
flow estimation [12], [13], as well as gesture and human
pose estimation [14], [15]. Characteristically, DVS-based
approaches tend to offer superior temporal resolution and
quicker inference speeds.

Nevertheless, when compared with the Active Pixel Sensor
(APS, standard RGB camera), the DVS emerges as a rela-
tively novel vision sensor. Also, compared to APS frames,
labeling DVS data is quite challenging, as events captured
are sparse, and inactivative objects triggers few events.
Consequently, there is a scarcity of large-scale annotated
DVS datasets, which are significantly harder to procure than
APS data. Unlike APS data that can be readily generated
by mobile devices and obtained from the internet, DVS
data collection necessitates specific hardware such as a DVS
camera and a laptop. Moreover, dataset collection typically
proves to be time-consuming and expensive, thereby posing
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Fig. 1. K-nearest neighbor graph comparison from events in (x, y, t) space.
The v2e event stream is generated with input video upsampled to 3000FPS.

significant challenges to the acquisition of large-scale DVS
datasets. Finally, it is neither practical nor cost-effective to
recreate every existing APS dataset for DVS. In this work,
we present an optimized video-to-event conversion algorithm
that can effectively mimic the nonlinear characteristics of a
DVS camera with high fidelity.

There are a few existing works trying to bridge the
gap between the APS frames and events, like ESIM [16],
[17], v2e [18], and EventGAN [19]. These methods can
be roughly divided into two genres: rule-based [18], [16],
[17] and model-based [19]. However, the former abandoned
recovering the lost information due to the dynamic range gap
between standard APS and DVS [20], [21], while the latter
doesn’t consider the characteristics difference between these
two types of cameras. Lastly, none of these previous works
have ever discussed the last mile problem: how to convert the
generated event voxels or the events number into realistic and
accurate raw event streams. All these works directly apply
either random or even sampling, which is clearly suboptimal.

Notably, while these methodologies successfully convert
videos to events, the resulting events continue to reside in
a series of discrete temporal layers. Fig. 1 illustrates a 3D
visualization for ground truth events and events generated
by V2CE and v2e [18]. For v2e, It’s apparent that all
the generated events share a series of discrete timestamps,
instead of spreading across the time axis in a continuous
fashion like real DVS recordings. This discrepancy is often
negligible when temporal accumulation-based methods are
utilized in subsequent task preprocessing, as the temporal
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Fig. 2. Proposed Motion-Aware Event Voxel Prediction Pipeline and Hybrid Loss Structure: Our method consists of two main stages. The Backbone 3D
UNet encodes input frame pairs and generates event frames. The Event Sampling Module, subdivided into chain decoupling and distribution transformation
modules, calculates event counts and in-voxel time, then redistributes events in Type2 voxels. The loss functions for training, displayed on the right, include
STP, TP, ADV, BC, and EF Losses, which are elaborated in Section II-A.

information is collapsed anyway. However, for tasks that are
sensitive to timestamps distribution, such as Graph Neural
Network (GNN) [22], [23], [24] and Spiking Neural Network
(SNN) [25], [26], [27], [28], this issue could prohibit using
generated synthetic data as pretraining dataset, since these
data has a significat domain shift compared to real events.

In this paper, we present a novel Video-to-Continuous
Events (V2CE) framework that addresses the challenges
associated with video-to-event conversion through two-stages
pipeline. Our key contributions are summarized as follows:

1) We introduce a specialized suite of loss functions
tailored for the video-to-event voxel task, thereby
achieving SOTA performance.

2) We develop a novel statistics-based local dynamics-
aware timestamp inference algorithm that enables the
smooth transition from event voxels to event streams,
outperforming existing baseline methods.

3) We establish the first set of metrics grounded in DVS
event characteristics, allowing for robust quantitative
evaluation in both the video-to-event voxel and the
voxel-to-event stream phases.

4) Through rigorous evaluation against established base-
lines, we demonstrate that V2CE significantly out-
performs them across all metrics, and the simulated
events’ count strictly match the ground truth. Our
comprehensive results analysis further underscores that
V2CE is not only the SOTA but also the first option
for generating continuous event streams.

II. PROPOSED SYSTEM

The proposed Video to Continuous Events (V2CE) sim-
ulator pipeline (outlined in Fig. 2) consists of two stages:

motion-aware event voxels prediction, and voxels to contin-
uous events sampling.

A. Stage1: Motion-Aware Event Voxel Prediction

The Motion-Aware Event Voxel prediction aims to trans-
form the APS video into a 3D voxels where the video data is
temporally upsampled. The temporal resolution is increased
by a significant margin and the event sequence is represented
in a spatio-temporal xyt coordinate system. We use a simple
UNet-based architecture to design this module.

However, the main challenge of this task is to preserve
the temporal continuity and the microstructures compatibility
of event voxels. High-fidelity event voxel reconstruction
requires information about nonlinear dynamics of light in-
tensity changes and object movements (e.g., acceleration or
higher order moment). While any linear assumption invari-
ably leads to suboptimal video-to-event conversion perfor-
mance, all prior work in this space only used an adjacent
frame pair to infer the events between them. Since no hint
is available to infer the nonlinear dynamics, all baseline
methods were essentially doing linear interpolation between
the input APS frame pair.

Therefore, we advocate using longer frame sequence in-
stead of frame pairs to serve as the input of the model, and
help local temporal information flow properly during the
inference. Bear these considerations in mind, we modified
a 3D UNet model and use a sequence of 16 frame pairs as
the input to the model.

Further complicating the task, event and APS cameras
differ in dynamic ranges, which affects information com-
pression in overexposed and underexposed areas. Addition-
ally, both camera types have adjustable parameters such
as exposure, ISO, and aperture, which can be dynamically



tuned to adapt to varying environments. This renders the
video-to-event voxel prediction a time-varying task, making
a straightforward one-to-one mapping between APS video
frames and event voxels especially challenging.

To address this complex task, a key contribution of our
work is the development of a hybrid loss function composed
of five distinct losses, which we briefly describe below.

Denote the input to the model as I ∈ R(B,L,2,H,W ),
where the five dimensions represent the batch size, sequence
length, and the spatial resolution. Then the output event
voxels satisfy V ∈ R(B,L,2×C,H,W ), where C represents the
timebin number between two frames, and the third dimension
has a shape of 2 × C since events of different polarities
are also separated. All losses take ground truth voxels and
predicted voxels as input.

The first loss to introduce is the Spatial-Temporal-
Pyramid Loss (STP Loss, LSTP ). STP loss takes the entire
concatenated voxel with a shape of (B,L × C,H,W ) and
applies a series of 3D Average Poolings with varying kernel
sizes and strides. This produces more compact represen-
tations of both ground truth and predicted event voxels.
The STP Loss encourages the model to extract multi-scale
information from adjacent voxels, enhancing its robustness
against noise by applying coarse supra-voxel matching. For-
mally, the STP Loss is defined as:

LSTP =
∑

k,s∈K,S

wk,s ·
∥∥P3D

k,s (VGT )− P3D
k,s (Vpred)

∥∥2
2

(1)

Where P3D
k,s (V ) denotes 3D average pooling operation ap-

plied to voxel v with a kernel size k and stride s, K represents
the set of all kernel sizes used in the pooling operations, S
represents the set of all strides used in the pooling operations,
and wk,s denotes the weights for each combination of kernel
size k and stride s.

Temporal-Pyramid Loss (TP Loss, LTP ) is designed to
prioritize neighboring events, which are crucial for voxel-
level event reconstruction. We employ 1D average pooling
along the time axis using varying kernel sizes and strides
on both ground truth and predicted event voxels, followed
by an L2 loss calculation. Formally, the TP Loss is defined
similarly to STP Loss:

LSTP =
∑

k,s∈K,S

wk,s ·
∥∥PT

k,s(VGT )− PT
k,s(Vpred)

∥∥2
2

(2)

Where PT
k,s denotes 1D average pooling along the time axis.

Similarly, Event Frame Loss (EF Loss, LEF ) compresses
the time axis by summing timebins between adjacent frames
or across the entire frame sequence along the time. This
addresses the issue of sparsity in voxels and ensures better
and aligned information flow between generated event frames
and the input frame sequence. Both polarized and non-
polarized event frames are considered in the loss calculation,
which is given by:

LEF = ∥SC(VGT )− SC(Vpred)∥22 +
∥SLC(VGT )− SLC(Vpred)∥22

(3)

Where SC(·) and SLC(·) denotes the compression operation
that sums over timebins C between adjacent frames and the
entire frame sequence LC respectively.

Adversarial Loss (ADV Loss, LADV ) aims to enhance
the realness of our generated event voxels. Utilizing both
ground truth and predicted voxels as real and fake samples re-
spectively, the discriminator is trained for optimal distinction.
To prevent LADV from becoming unbounded, the generated
event voxels strive for high similarity with real voxels to
effectively deceive the discriminator.

As previously noted, the relationship between APS frames’
pixel brightness and the event number between frame pairs
is not static, necessitating a dynamic, semantics-based mod-
eling of intrinsic camera parameters. This complexity arises
because APS captures brightness as ϕ(I), while DVS records
log(ϕ(I)), where I is the scene’s absolute brightness and
ϕ(I) represents the effect of camera parameters. Given that
multiple intrinsic parameters affect ϕ, a fixed linear mapping
is untenable. To address this, we introduce Brightness-
Compensation Loss (BC Loss, LBC), which compute the
average brightness Ia of voxels exceeding a threshold β, and
align this Ia with that of the ground truth voxels. we define
the average brightness Ia as:

Ia(V ) =

∑
v∈V,v>β v

|{v ∈ V : v > β}|
(4)

Where β serves as a threshold to consider voxels that exceed
a certain brightness. Given this, the BC Loss between ground
truth voxels VGT and predicted voxels Vpred is:

LBC = ∥Ia(VGT )− Ia(Vpred)∥22 (5)

At last, all these losses are combined together with a separate
weight factor α (which is learned by grid search). The
complete loss formula is:

L =αSTPLSTP + αTPLTP+

αEFLEF + αADV LADV + αBCLBC

(6)

Once trained, the motion-aware event voxel prediction gen-
erates 10 voxels per pixel between consecutive grayscale
video frames at 30 fps. This effectively maps each frame
with dimensions H × W to an event voxel of dimensions
(2×10)×H×W . Upon evaluation with the entire MVSEC
dataset [29], we found this ten-fold upscaling to be adequate.
Specifically, only approximately 2.30% of the voxels are
non-zero, and among these, a mere 6.66% exceed one. This
validates that partitioning the time range between two frames
into 10 timebins is sufficient for capturing the event stream.

Fig. 3. Visualization for two stages in LDATI.



B. Stage2: Voxels to Continuous Events Sampling

This second task aims to recover the exact event times-
tamps in a continuous scale from Stage1’s output event voxel.
Prior studies explored limited and simple sampling methods
(e.g., random or even sampling) to achieve this. Leveraging
the nonlinear dynamics of the event firing trends in each
voxel, we propose an advanced sampling technique called
Local Dynamics-Aware Timestamp Inference (LDATI)
for event timestamp recovery which yields only 3.5% error
metric compared to conventional sampling techniques.

Event voxels aim to discretize temporally contiguous
events into a dense tensor, suitable for deep learning infer-
ence. Rather than merely counting the event numbers in each
voxel (with the temporal resolution of δ), the generation of
event voxels also preserves the relative temporal information
of events within the timebin. Each event influences the
voxel series for a short and finite duration which can be
characterized by a continuous-time unit step signal (with an
on-time duration same as δ). The value of each voxel is
determined by integrating all the step signals for all events
within a voxel’s designated time range. The sum of all voxels
at the same pixel location equals the total number of events
occurring within that time frame. This allows the voxel to
summarize the total number of events and their relative times
with a single number.

Considering the inverse process of event voxel generation,
let v be the value of a voxel and v′ be its value after removing
the influences of events from the preceding voxel. If only
one event is fired in the current voxel, its relative occurrence
time within the voxel can be determined by e = ⌈v′⌉ − v′.
This event will then exert an e-unit influence on subsequent
voxels. Starting from the first voxel, where v = v′, we can
iteratively deduce the event count and their relative positions
in each voxel, a process we term as Chain Decoupling
(Fig. 3.a). This computation is deterministic, as it merely
reconstructs the inherent temporal information in the voxels.

Voxels are Type1 if v′ ≤ 1 and Type2 if v′ > 1. As
per Section II-A, event voxels are sparse. Type1 voxels use
Chain Decoupling; Type2 require alternatives. Motion and
changes happen in a continuous manner and don’t change
abruptly under natural condition. Thus, if the preceding voxel
has a greater value than the succeeding one, events in the
intervening voxel are more likely to be biased towards the
former, and vice versa.

To accurately model this phenomenon, we assume that
each voxel and its neighboring voxels conform to a slope
distribution described by the Probability Density Function
(PDF) f(t) = kpt + bp. Given that the event timestamp
distribution within a voxel is primarily influenced by its
temporal neighbors, a simpler slope distribution suffices for
both accuracy and computational efficiency. This PDF allows
us to estimate event timestamps while accounting for local
dynamics, outperforming random sampling approaches.

Let the voxel value in three adjacent voxels be denoted as
N0, N1, and N2, and their sum as M . Our objective is to
derive the expression for their PDF f(t) using these known

Fig. 4. Event frame comparison between V2CE and baseline methods.

variables. If g(t) represents the PDF of the event timestamp
distribution conditional on t being in the central voxel v1,
we have:

g(t) = fT |V (t|v) =
fT,V (t, v)

P (V = v)
=

f(t)

P (V = v)
(7)

In this formulation, T and V denote the exact event times-
tamp and its corresponding timebin, respectively. The rela-
tionship among f(t), g(t), and P (v) is visually explained in
Fig. 3.b. It can be readily shown that P (v) also follows a
linear formula with a slope ks = δkp = δkg . Given ks =
N2−N0

2δM , the expression for g(t) can be derived accordingly.

g(t) = kpt+ 1/δ − δkp/2 (8)

where kp = N2−N0

2δ2M . While g(t)-based sampling could be
applied individually on each voxel, this would be compu-
tationally expensive due to varying distribution formulas
and event numbers. However, we can optimize this process
through distribution transformation. By initially sampling
from a uniform distribution with PDF γ(u) = 1/δ, and
then converting it to the desired slope distribution via matrix
operations, we significantly accelerate the sampling process.
This conversion can be achieved using the inverse cumulative
distribution function (CDF) method as follows:

t = (−bp +
√
b2p + 2kpu)/kp (9)

III. EXPERIMENTS AND RESULTS

A. Motion-Aware Event Voxel Prediction

Existing video to event simulation methodologies primar-
ily rely on qualitative assessments and consequently lack
in standardized objective quantitative evaluation metrics. To
address these challenges, we introduce the following novel
metrics tailored for this specific task:

1) PMSE (Pooling MSE) aims to compare the predicted
voxel cube with the ground truth by employing a 3D average
pooling (with kernel and stride of 2 or 4) and then estimating
the Mean Square Error (MSE). The 3D average pooling



TABLE I
THE QUANTITATIVE COMPARISON BETWEEN OUR METHOD AND ALL BASELINE METHODS ON THE TESTING SET.

Method TPF1↑ TF1↑ RF1↑ TPAcc↑ TAcc↑ RAcc↑ PMSE-2↓ PMSE-4↓
ESIM [17] 0.3293 0.2670 0.1301 0.6240 0.7200 0.8801 3.03512 1.54268
EventGAN[19] 0.2398 0.1544 0.0520 0.1773 0.1773 0.1530 0.05779 0.03030
V2E[18] 0.3656 0.3197 0.1604 0.7214 0.8207 0.9269 0.04929 0.02618
Ours 0.5323 0.5058 0.3014 0.8891 0.9266 0.9709 0.00267 0.00074

Fig. 5. Zoom-in comparison on event frame details.

extracts a slightly higher level summary of the sparse voxel
cube. 2) TAcc collapses the time axis of the 3D voxel cube to
convert to a 2D frame for each polarity, apply a thresholding
(with a value of 0.001) to convert it to two binary 2D
frames for each polarity and lastly estimate the accuracy
by performing the binary matching. 3) TPAcc) is similar to
TAcc, except it ignores the event polarity by accumulating
the voxel cubes of two polarity. 4) If no temporal or polarity-
wise accumulation is performed, the metric is termed RAcc
(Raw Accuracy). 5) TPF1, TF1, RF1: we follow the same
procedure as TAcc, TPAcc or RAcc except we calculate the
F1 score instead. Given that event voxels are generally sparse
(only 2.3% voxels in the MVSEC dataset are non-zero),
the F1 score becomes a more representative measure of a
method’s efficacy in accurately recovering event voxels. In
this work, we treat TPF1 as the main metric.

1) Comparison with Existing Works: We assess our video-
to-events model against baseline methods using metrics that
encompass both temporal and spatial aspects, as previously
outlined. Consistent testing, training, and validation sets are
employed for all methods. For EventGAN [19], we set its
timebin number to 10 as well during retraining to align
with our framework, while maintaining other settings. ESIM
[17] and V2E [18], as non-model-based approaches, were
executed with default configurations. As shown in Table I,
our model excels across all metrics and achieve SOTA.

Qualitative comparison can be found in Fig. 4, 5, and 6.
Fig. 4 shows a 2D event frame-level comparison between
all the video-to-event voxel methods, and all event frames
are clipped to the maximum value of the ground truth
event frame and then normalized. Thanks to our specially
designed losses, our predicted event frame are loyal to the
actual brightness level, which means the events number
generated are close to the actual event number. However, all
the baseline methods tend to generate much more events in

Fig. 6. Voxel Cube comparison. (Notice: Voxels, not raw event stream.)

general, and the details don’t match well. Due to the unstable
and noise-prone nature in the underexposure part of the
grayscale images, baseline methods generally behaves poorly
in night scenes. For the overexposed region of a scene, since
the pixel value has saturated and the detailed information in
these regions is lost. Without a good semantic understanding,
this lost information can never be recovered. Moreover, all
baseline methods behave quite aggressively when it comes to
any edges, but different from a simple edge detector, a video-
to-event converter not only need to learn when to generate
events, but also when not to. A zoom-in comparison can be
found in Fig. 5.

To better visualize the performance of different methods
on the time axis, we also generated a 3D plot in the xyt
space, as shown in 6. If the value of a voxel is greater than
0.01, one node will be placed in the corresponding location.
It’s clear that our prediction also matches the ground truth
voxels significantly better both spatially and temporally.

2) Ablation Study: As indicated in Table II, the removal of
any loss functions leads to a decline in our primary metrics,
TPF1 and TF1. Eliminating LST P or LBC , which focus on
high-level matching and compensation, slightly improves the
voxel-wise metric RF1 but negatively impacts all other met-

TABLE II
THE ABLATION STUDY RESULTS FOR ALL OUR PROPOSED LOSSES.

Ablation Item TPF1 TF1 RF1 PMSE-2 PMSE-4
STP Loss 0.5253 0.4999 0.3041 0.00279 0.00078
TP Loss 0.5170 0.4794 0.2528 0.00314 0.00084
EF Loss 0.4638 0.4461 0.2938 0.00248 0.00075
ADV Loss 0.3583 0.2817 0.1662 0.00225 0.00068
BC Loss 0.5253 0.4983 0.3070 0.00277 0.00076
w/o Ablation 0.5323 0.5058 0.3014 0.00267 0.00074



Fig. 7. Qualitative comparison between all voxel-to-event sampling
methods given a randomly generated event stream (blue upward wedges). In
this figure, “Ours-S” and “Ours-R” represent chain decoupling with slope
distribution and chain decoupling with random distribution for Type2 events.

rics. Deactivating the LADV results in a significant drop in
all F1 metrics, despite a concurrent decrease in PMSE losses.
This suggests that while the absence of LADV may improve
voxel value matching, it significantly deviates the generated
voxels from real voxels’ distribution. Hence, each proposed
loss function positively influences the final performance.

3) Training Details: We trained our neural network using
the Adam optimizer, setting the learning rate to 0.001 and
running the training for 100 epochs on our dataset. This
project is built on top of PyTorch Lighting. We employed
the Multi Vehicle Stereo Event Camera (MVSEC) dataset
[29], which is one of the largest and most commonly used
datasets for DVS-based research. The dataset was randomly
partitioned into training, validation, and testing subsets, fol-
lowing an 80%/10%/10% distribution. Each data entry in the
dataset comprises 17 sequential grayscale frames, along with
the associated 16 event packets in between.

The size of our Stage1 model is 52.9MB, and it requires
779.17 GFlops to perform inference on a single image
pair sequence. Each sequence has a length of 16, which
corresponds to 0.53 seconds of video length when the video’s
frame rate is 30Hz. When evaluated on an A10 graphics card,
the model’s average inference time for a 16-pairs sequence
was 312.83 milliseconds, and the corresponding sampling
time in Stage2 was 106.97ms. This allows us to generate
events from approximately 39 frames per second, meeting
the criteria for real-time performance.

B. Voxel to Continuous Event Sampling

To evaluate event voxel-to-event stream generation, we
introduce three metrics. Mean Event Timestamp Error
(METE) quantifies the average temporal discrepancy, in
microseconds, between each ground truth and the nearest
predicted event at the same pixel. Ground truth events
without a nearby counterpart within 3δ on the time axis
are termed “overflow voxels,” and their error is capped at
3δ. Number of Overflowed Events (NOE) quantifies the
number of such extreme errors. To mitigate potential bias
from oversampling, we introduce Ground Truth/Predicted
Event Number Ratio (GPER), aiming for a value as close
to 1 as possible. By multiplying the GPER when it is greater
than one, we can get the calibrated METE and NOE, which
are called C-METE and C-NOE.

TABLE III
TESTING SET EVENT VOXEL-TO-EVENT STREAM RESULTS COMPARISON.

Method Type2 Events C-METE C-NOE GPER
Even Even Sampling 4003.528 2362 1.000
Random Random Sampling 3657.325 2350 1.000
LDATI Random Sampling 851.679 638 1.000
LDATI Slope Distribution 142.884 0 1.000

For baselines, we consider two standard techniques: ran-
dom and even samplings. Let v be the input voxel value.
In both methods, the estimated event number ṽ in a voxel
is computed as ṽ = ⌊v⌋ + Bernoulli(v − ⌊v⌋). In random
sampling, ṽ events are sampled randomly within the timebin.
In even sampling, we find the maximum M = max(ṽ) across
all voxels, divide the timebin into M equal sub-timebins,
and sequentially place ṽ events starting from the leftmost
sub-timebin. A qualitative comparison is shown in Fig. 7.

To rigorously evaluate our LDATI sampling method, we
conducted an experiment on ground truth event streams from
our test set, converting them to event voxels as outlined in
Section II-B. We then applied various sampling techniques
for event reconstruction and computed the predefined met-
rics. The results, detailed in Table III, confirm a GPER metric
of 1 for all methods, eliminating under- or over-sampling
concerns. LDATI significantly outshines the baselines, with
a C-METE metric just 3.5% that of the even sample and a
NOE of zero throughout the test set. Substituting our slope
distribution sampling with random sampling for Type2 events
led to a 6× higher C-METE error, underscoring the efficacy
of slope distribution sampling.

In our study, we implemented a two-stage evaluation
and refined the metrics. Although Stage 1 introduces no-
table voxel-level errors, skewing the overall error relative to
ground truth, our V2CE pipeline demonstrates its efficacy
as shown in Table IV. Unlike prior methods that tend to
oversample events substantially (up to 53.3× more), leading
to significant divergence from the true event distribution,
V2CE closely matches the ground truth in event count while
simultaneously achieving optimal accuracy metrics.

TABLE IV
TESTING SET VIDEO-TO-EVENT STREAM RESULTS COMPARISON.

Stage1 Stage2 C-METE C-NOE GPER
EventGAN[19] Random 395057.269 372383 45.280
ESIM[17] Even 876386.946 1346561 54.299
v2e[18] Even 63738.935 82238 5.145
V2CE Even 11131.586 12568 0.720
V2CE Random 11079.564 12487 0.720
V2CE LDATI 10039.262 10364 0.997

IV. CONCLUSION

In this paper, we present V2CE, a novel pipeline that
converts video to high-fidelity event streams for tasks re-
quiring precise events. We introduce quantifiable metrics
that elevate this field from qualitative to rigorous scientific
analysis. V2CE excels overwhelmingly across all metrics.
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